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Abstract

Theory and computation techniques of the various

types of generalized inverses of matrices which have

polynomial elements x, y, z..., etc., are presented.

A simple algorithm for computation of generalized in-

verses of a constant matrix is established, and then

applied to the case of matrices having polynomial

elements in several variables. Reduction of a matrix

to its Smith form over the ring of polynomial elements

in several variables is presented. A simple algorithm

for investigation of the system Ax = b in case of

constant and nonconstant rank of A is presented.

Application of generalized inverses to solve more

general matrix equations such as Lyapunov and Riccati

equations is studied.
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Introduction

The problem of solving m linear equations in n

unknowns over the field ofocomplex numbers can

be formulated as a matrix equation Ax = b , where x

is the column vector of 'unknowns'. If A is a non-

singular square matrix, then the linear matrix equation

has an immediate solution, given by x = A- b. If,

however, A is a singular square matrix or in general

nonsquare matrix, then the classical inverse of A is not

defined. In this case it is possible to find a similar

representation of the solutions of the system Ax = b

using generalized inverses associated with the matrix.

In 1920, Moore 22 published a theory for the

generalized inverses in abstract form. In 1955,

Penrose published a theory for a generalized inverse

of any matrix with complex elements. He showed that

for any matrix A whose elements are complex numbers

there exists a unique generalized inverse, called

Moore-Penrose inverse, A + . This unique matrix A4

is used to find the minimum-norm solution to the least-

squares problem I Ax-bj = minimum. Penrose put four

conditions which must be satisfied by the generalized

inverse A

Since 1955, the concept of generalized inverse

-p has been modified to include more general generalized

inverses which satisfy only some of Penroses's four

1.



conditions. These generalized inverses are not unique.

The most important generalized inverse, which is enough

to investigate the system Ax =b, is an A1inverse which

satisfies the first Penrose condition, AA 1A = A.

Chapter I of this thesis contains the theory of

all types of generalized inverses. The theory of

generalized inverse which produces a special solution

for the system Ax = b, will be studied. In Chapter II,

the computation techniques of the generalized inverses

will be established. A simple algorithm for computing

all types of generalized inverses will be introduced.

In Chapter III, the theory of generalized inverses of

matrices with polynomial elements will be discussed.

The conditions under which a matrix with polynomial

elements has a generalized inverse will be investigated.

The problem of finding a solution of the system Ax=b,

where A has polynomial elements in more than one

variable, will be studied. Chapter IV will contain

application of generalized inverse for solving more

general matrix equations such as Lyapunov and Riccati

equation.-I

Throughout this thesis capital letters denote

matrices, while lower case letters represent scalars.

2



I Theory of Generalized Inverses of a Matrix

Definition of Generalized Inverses

The main purpose of this chapter is to establish

the main concepts of generalized inverses of a matrix

with complex elements. Any m-n matrix A having real

or complex elements satisfies the following four axioms:

(I) AXA = A

(II) XAX = X

(III) (AX) is hermitian

(IV) XA is hermitian

where X is a unique (n-m) matrix. This unusual fact

was proved 4y Moore [ 22 7 in 1920 in abstract form and

established as shown above by R. Penrose[ 25 ] in 1955.

The introduction to this field of interest will be

given in special cases with respect to the matrices

which satisfy axiom I; axioms I, II; axioms I, II, III,

and finally, axioms I, II, IV. These more general

cases will be denoted by Al, A1 2 , A,2,3 , A1 ,2 ,4,

respectively, which in general, are not unique for

given matrix A.

Below, is given a list of those types of generali-

zed inverses. Unfortunately, there are a lot of

different notations for each type, but in this thesis

we will use the notation given above.
I[
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A -Inverses: every matrix possesses at least one

A1 inverse, sometimes termed "generalized-inverse", A

or g-inverse.

A1 ,2 ,3 ,4 -Inverse: Every matrix whose elments are

real or complex numbers possesses a unique A1,2,3, 4

inverse called "Moore Penrose inverse" and usually

denoted by A
A 2-Inverse: Every matrix possesses at least one

so-called weak generalized inverse, or reflexive

generalized inverse.

A 1 ,2 ,3 AI, 2 ,4 -Inverse: Every matrix whose elements

are real or complex numbers possesses at least one A1,2, 3

and one A 1,2,4 inverse. In the case of full row rank

(full column rank), there exists a right (left) inverse

* which in this case will be an A1 2  (A1,2 4 ) inverse.

In this chapter we will try to investigate the

theory of different kinds of generalized inverses.

Let Cm *n denote the vector space of all men matrices

having complex numbers as elements.

Characterization of A1 Inverse

Theorem (1-1): Let A be an m.n matrix whose

elements are real or complex numbers (i.e., Acmen).

The matrix G of order n-m is an A1 generalized

inverse of A if and only if X = Gy is a solution for

it consistent equation Ax = y.

4
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Proof: First, assume that the equation Ax = y has

a solution. This implies the existance of a vector w

such that Aw = y . Substituting with AA A=A we have

Aw=y AA 1 (Aw)=y A(AIy)=y

The last equation implies that x=Aly is a solution of

Ax=y.

Second, suppose that Ax = y is consistent.

Suppose that there exists a solution X such that

x = Gy then,

A(Gy) = y

AGAx = y

AGA= A

G is A inverse of matrix A.

Theorem (1-2): Let A be an m.n matrix whose

elements are real or complex. Then, the matrices A A

and AA1 are idempotents with the same rank as A. Further,

rank A =trace A A =trace AA,

5
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Proof: Suppose H = A A and F AA1

H2 A(AA A) A A = H

and also

F2 = (AAIA)A1 = AA = F

II
Also, rank A > rank H > rank AH = rank A and

rank A > rank F > rank FA = rank A. These relationships

imply that rank A = rank H = rank F. Since H and F

are idempotent, the rank is given by the trace of each.

From the equation AA A = A it is clear that rank
1

A1 > rank A.

Based on previous theorem we can define A inverse

1

of A.Cm 'n as a matrix AICCn 'm such that (A1 A) is an

idempotent and R(AIA) = R(A) or, alternatively AA is

idempotent and R(AAI) = R(A).

Characterization of A Inverse

Theorem (1-3): The necessary and sufficient con-

dition for an A inverse to be A1 ,2 inverse of matrix

A(m.n) is that rank of A1 = rank of A.

Proof: Suppose that A1 ,2 is an {1,2} -inverse of

A , then

6
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AA 12A A rank (A) rank (A 1 1,)

A ,2AA1, 2 = A1, 2  rank (A1,2) _< rank (A)

Thus, Rank(A) 7 rank (A 1 , 2)

Conversely, suppose that A1, 2 is an {1}-inverse

of A with R(A) = R(A1 ,2)" This implies the following

AA 2A = A
.12

it(A) = R(A1, 2 ) = R(A!, 2 A)

In addition, AI,2 A is idpmpotent using the previous

definition of !t}-inverse, A is (].}-inverse of A1 ,2.

This implies that A1,2AA 1,2 = A1,2 and this completes

the proof.

TheoremiL) : Any A1 ,2 -inverse of A can be

expressed as

A1,2 = A1AAI

where A1 and A are (possibly different) A -inverses

of A.

Proof: Tne proof will be given in detail in

Chapter TI.



Matrices of Full Rank

Theorem (1-5): A matrix AcCmen has a right inverse

Ar if and only if rank (A) = m (full row rank). For

a full row rank matrix AcC n , the following statements

are equivalent:

a. Ar is a right inverse of A

b. Ar is an A1 -inverse of A

c. Ar is an A ,2,3-inverse of A

Proof: To prove that "a" implies "b" and "c",

suppose that Ar is a right inverse of A, i.e.,

AA = I

Premultiply: previous relation by Ar and post-

multiply by A we get

ArAAr =Ar, and

AA rA = A , respectively.

Thus, Ar is an A ,2,3-inverse. Next, suppose that

Ar is a {}-inverse of A. Since rank A equals m , we

can find two nonsingular matrices P and g such that

PA = [11M0] or

A - P 1 [ImI ] 01

Ii 8



any {1}-inverse can be written as follows:

where U is arbitrary.

Substituting in the first three axioms of qeneralized

inverses, we get

AA =(P 1[1I10]Q-1)Q[Im]P (P1[Ii 0]Q0 1
1 =

Is [1.10] = A

A 1 AA 1 = ([]P) P-k1I0] Q-(0 [1P)

=P[I 1010

P 11m P=Im

Thus, "b" implies "a", and "c". It is clear also that

"c" implies "a", and "b".

Theorem (1-6): A matrix AECmn has a left inverse

(At) if and only if, rank (A) - n. For a full column

rank matrix AcC me the following statements are

equivalent:

9~~~~~~h7 77_____________-



a. AZ is a left inverse of A

b. A# is an A1 -inverse of A.

c. At is an A 4-inverse.
1,2,4

Proof: Proof is similar to theorem (1-5).

Minimum Norm and Least-squares Solution of Ax-y

Theorem (1-7): Let the norm of x ER n be defined as

1xII = (x*x)h. Let the equation Ax=y be consistent.

Let the minimum norm solution x be x = Gy. Then, G

is an A,2,4 inverse of A. In this case, the minimum

norm solution of consistent equation Ax=y will be uni-

que, although minimum norm generalized inverse may

not be.

Proof: To illustrate the optimal property of

A as stated in the previous theorem, let us consider1,2,4

the following consistent system of equations

Ax = b

where

A [2 6 9 5 b 5
1 -3 3 .L5

One can check that the following matrices are

A1,2  A, 2 ,4  A, 2 ,4-inverses, respectively.

10



5 -2 0 32 -11 8 82 -31 10
109 ].0 109 10-9 To9 109

96 -33 0 246 -96 30
0 0 0109 1090 109 109 1090| 0 0 lo To log6 fog lo--g

e -75 36 ' -90 42 -3

-2 1 7 52 -17 9
L- 0 0 19 109

Each of the above matrices will give a solution for the

system as follows:

5 -2 0 1-

x = 0 0 0 5 = 0

0 0 0 50

-2 1 0 3

32 -11 0' -23

'2 96 -33 0 5 109 -69

-75 36 01 L5 105

7 1 0 12l J 12j

82 -31 10 -3

x3- 1 246 -96 30 5 -69
3 10 90 42 -3 5 9 105

L-52 -17 9 12Ln

Notice that both A1 ,2 4-inverses give the same solution.

e 11

_______________________



Theorem (1-8): Let G be a matrix such that Gy

is a least squares solution of the inconsistent equation

Ax = y for any yeRm  Then, G is an A 3-inverse•1,2,3

of A . A least squares solution x=Gy may not be unique,

but minimum I Ax-yIJ is unique. If Gy is a least

squares solution, then the class of least squares solu-

tions is xg = Gy + (I - GA)Z, is arbitrary.

Proof: Note that the least squares solution is the

solution of the consistent system Ax = y , where y

is the projection of y onto the column space of A.

That means to find a solution to the system Ax = AGy

where G is an A1 -inverse substituting with general

solution, we get

Ax = A(Gy + (I-G A)Z)

= AGy + AZ - AGAZ

= AGy + AZ - AZ

= AGy = y

Notice that there are infinitely many least square

solutions. Let us consider the following inconsistent

linear system:

12



1 7I 0o

i i i i

A has the following (1,2,3} generalized inverses.

* . J ' ~ 1' i

.4 These generalized inverses will give the following

F least square solutions

0  0 
-0

II

--
C3 [ I l 0 1 01

4 l i

L6 6, L6

__

All have the same I IAX - yll I

Theorem (1-.9 ): Let G be a matrix of order

n~m such that Gy is the minimum-norm, least-squares

solution of Ax = y. Then, G is the generalized

eseA of the matrix A.1nv0seA13

,2,3,

1 110
i6

; i
3 1 1



Proof: The proof is direct application on theorems

(1-7) and (1-s. The previous example shows that the

last solution (corresponding to A ,2,3,4-inverse) is the

minimum-norm, least-squares solution.

14



II Computation of reneralized Inversos

Introduction

The main purpose of this chapter is to establish

the techniques to be used in the more general cases of

computation of the various generalized inverses of

matrices.

First, the elements of matrices considered will be

real or complex numbers. Let Cm en denote the vector space

of all m.n matrices having real or complex numbers as

elements. Let Ir be the identity matrix; that is,

I rECrr Let 0mn cmn be the zero matrix, that is, all

elements equal zero. Capital letters will deonte matrices.

In the next section the aeneral representations of

A1 and A12 are given. Reduction of a matrix AcCCn

to its canonical form using elementary operations is used

to derive a general formula for computation of AI1 and A1, 2

generalized inverses.

In the following section, the techniques given above

will be modified. A simple computation technique for

computing A,, Al 2, A1, 2 ,3, A, 2 ,4 and A , 2,3,4 will

be given. This technique will be based on the previous

technique after suitable partitioning of the transformation

matrices.

Next, the basic technique given above will be applied

through simple examples.

t 15



The basic technique previously given will be applied

to investigate the linear system of equations Ax = b and

to find the general solution, if it exists. A comparison

between this new technique and the other techniques will

be given through simple examples.

In the next section, the technique for computing

A+ using factorization will be given.

After that, the basic technique given in the third

section will be applied for computing A1 and A2 of a

specified rank.

General Representation of A and AIl 2

In this technique, the Gausian elementary operations

(row and column) will be used to reduce any matrix

A. Cm n to its canonical form. In other words, for each

matrix AcC~ there exists two nonsingular matrices

R~cm 'm and C.Cn'nsuch that

R A C =Y = Irl 01(-1
RAC=I= .(2-1)

Theorem (2-1)

Let A:Cmn with rank r. Let RcCxim and C Cn n be

nonsingular such that

R AC r + (2-2)

16



>1I

then

A 12 Cr r R(2-3)I ° [+3
is a {1,2}inverse of A.

Proof:

First, we prove that A 1 ,2 satisfies the first axiom

for generalized inverses as follows:

1 -a" [r+ _) [+ rj -]

Moreover, A satisfies second axiom, that is
R r _C

' < L ~~~I + Kl jL io
A1 ,2  A1 ,2 =(C R) (R1- 1 C1 )(C R)

t~ 1,2 (43 = E k
_ 17

0~ .... .0 [ ir-0 +



Theorem (2-2)

Let AECm 'n with rank r. Let R and C be as previously

defined in (2-2). Then

A. =C R(2-4)

where U and W are matrices of proper size. That is, U)Cr(mr)

and W C"(n-r) (m-r)

Proof: The proof is trivial by substituting (2-4) into

Axiom-i of generalized inverse. That is:

A 1 A = rU10 0 (R [rK JC-I) (C [ JR) (R 1 [!r j C 1 )

= -' FW [0 0J
R- 1 1r UIr JC-1 = R-1 [IrK c1 A

Theorem (2-3)

Let AEC m en and P, Q be nonsingular matrices such

that:

PAO (2--r5)-Lo lO OI
where r is the rank of A. Then

A 1  0[rwJP; (2-6)

18
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UCrX (m-r) WC(n-r) Xr W (n-r)X(m-r)

Proof: A, given in (2-6) satisfies the first axiom

as follows:

A A A = (P 1 - 0] o-' << [r j <P-, r r l Q-1)L° r I [+ LV Wjo o

LIl Lo  I °3 -.
P 1 0 A

Remark: There may be infinitely many A1 .

Theorem (2-4)

* Let AECm 'n and let X belong to Cnom then X is a

{1,2}-inverse of A if and only if X has the followina

form:

X = 1 A A1  (2-7)

where and A1  are two (not necessarily different)

{1} -inverses for A.

Proof:

Sufficiency proof: if (2.7) holds, then X

satisfies the first and second axioms. That is

19
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AXA = A A AA A= A A A = A

and

XAX ( AA )A (AA = A1 AAA AA

=A AA = A

Necessity proof: Let us suppose that X is

a {1,2} -inverse to A. X satisfies the second axiom.

That is

X =AX

using first axiom.

X = X(A X A)X (2-8)

= X(AYA)X(AZA)X

where Y and Z are two {I} -inverses for matrix A. X

qiven in (2.8) can be reduced as follows:

X = XAY(AXA)ZAX

= (XAY) A (ZAX)

- N A M

To complete the proof, it is sufficient to prove that N

and M are two (1) -inverses for A as follows

20

.



ANA = A (XAY) A =(AXA) YA

= AYA =A

and

AMA = A(ZAX)A =(AZA)XA

= AXA = A.

Theorem (2-5)

Let AEC mn and let X~Cnm then X is a {l,2}-inverse

of A if and only if X has the following form:

X=0[r ] P, (2-9)

where P,Q are two nonsingular matrices such that:

PAO Ir0 (2-10)

and V,U are arbitrary matrices.

Proof: First, we prove that X given in (2.9) is

{1,2} -inverse as follows:

21
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0 A

and

XAX = OI JP) (PI rl I JQ~ (A Flrl U] P

I 0I U
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Lemma (2-1)

Let XECn 'm and AcCm 'n and let X be

X = Q 0 J P (2-11)

then X is a (1,21-inverse of A

Proof: Proof is evident by choosing U = 0 , and

V 0 in (2-9)

The Basic Technique

In this part, the basic algorithm used for computation

of generalized inverses will be established. Let Cmn

denote the vector space of all men matrices having real

or complex elements. Let Ir be the identity matrix;
rr

that is, .r~ Le 0 omn Cm ' be the zero matrix;

that is, all elements equal zero. Capital letters will

denote matrices.

Theorem (2-6): Let AeCm 'n with rank r. Let

PeCm om , 0OC n on  be nonsingular matrices such that

PAOQ= Y=' o (2-12)

Consider the following partitioning for matrices

P and 0

23
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MCC~mrr 4 n (n-r)

where T C r*m MC CNC

Then the following pair of matrices

I n 0(2-14)

are equivalent.

Proof: For any AEC" there exists nonsingular

matrices P,Q as defined in (2-12). To show that the

matrices given in (2-14)are equivalent:

P P A 1 =

Theorem~~~~~~~~ (2 7 M L t A C ~ n , l t P Q S T M N 
b

marie deie as in (2 1an (21) thnAST
is a {12- n of A.

24T



Proof: Applyinq Lemma (2-1)r 0 0 :
A112 0 L' a]0 p

Is IN i J li ST

Theorem (2-8): Let the matrices A,P,Q,S,T,M,N

be matrices defined as in theorem (2-7). Moreover, let

TM t = 0, (2-15)

then

A 1,2,3 = ST

Proof: First, let X = ST and let TMt = 0. It is

obvious that X satisfies the first and second axioms.

To complete the proof it is sufficient to verify the

third axiom. That is

AX = (P-1[ o 1 o ')(ST) (2-16)

= P- fIr-- j (Q'S)T
14r

I2



lisinq the fact that Q-LQ I n , then

- [ j NJ

•,Q ,= Q 'N -- (2-17)

I Substituting (2-17) into (2-3.6) we can writc

Ax=: 1,- r j T (2-18)

But

ppt [2: .t;t r~.~Jj (2-19)

Substituting with 12-1.5) into 12-].n1

12

0 in-

1 i i - , I -I/ N "



P P rTT t 01

L 0  f4M tj

multiplying both sides by

F TTt) - 0 ]

0 (MM)

we have

p~~pt [Tt1(MMt)-1]

* ~-i = ~t [TTt - (MM*) ]
Substituting with P~ into (2-18) We have

AX= Pt (TTt f 0 1Zr 0] J

= Pt [(TTtr-l 0 ] p
which is symmetric.

27



Theorem (2-9): Let the matrices A,P,Q,S,T,M,N

be matrices defined as in theorem (2-6). Moreover, let

NtS = 0; (2-21)

then A 1,2, 4 = ST.

Proof: The proof is similar to theorem (2-8).

A **A = (ST) P-Q1 (2-22)

[ SI ro][ 0- 1 where TP1 [ Lrlol0 r 0

[ Q 01

Qt L [S IN) [S S = N ( tN)]

0- [0S)- (N tN) ]MO1

Substituting into (2-21) we have

A 1 2 ,4 A = (2-23)

0 0 0 (NtN) -

=0 L So) 0 t
0 0

28



which is symmetric.

Lemma (2-1): Let the matrices A,P,Q,S,T,M,N be

matrices as in theorem (2-7). Moreover, let

t
TM 0

and

Nt S 0 hold ,

then

A A =ST1,2,3,4

Proof: Referring to theorems (2-8) and (2-9), it

is clear that A+ satisfies the four axioms.

Application of the Basic Technique

The following examples will illustrate the computa-

tion techniques given in the .Second section. This tech-

nique will be generalized to the cases where the elements

of the matrix are polynomials in several parameters.

Example 1. Given the following matrix

A1 1 (2-24)

It is required to compute A1 ,A 1 2 ,A 1, 2 3, A1, 2 ,3 ,4

(A+ ) . The first step in the process is to form the

following array
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"I 1 1 1 0

1 . ]. 0 1 1

_in _ 0 j- (2-25)
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

Elementary row operations on A will affect Im

only and elementary column operations on A will affect

the columns of In only. A obviously does not have a

classical inverse, since it is not square. The second

step is to perform row elemontary operations on A to get

the following array

* 11 I 1

0 00 11 1
, -(2-26)

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

Next step is to perform elementary operations on

the columns of A to get the following array

-, -, -I.1 0o 0o I r 0o

0 0 0 -1 1 0 0

1 -1 -1 0 0 (2-27)

0 1 0 0 0 0

0 0 1 0 0
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TT

0 0 M (2-28)

This process is not unique, however, one should check

the following for possible errors

-1 1 1 0 F1 o

Now we can compute A1,2 as follows

A 1,2= ST 1 -1

We can check the answer to see that

AA 1  A = A1,2

and

A1,2 A A1,2 = A1,2

Next, to get A 1,2,3 it is required to further modify

(2-27) array by making the rows of T orthogonal to rows

of M. This can be accomplished by adding multiples of

second row of A to the first row. In our example we will
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add ( ) times the second row to the first one and this

will result

1 00 0

0 0 0 -1 1

-1 -10 0

0 1 0 0 0

0 0 1 0 0

Then

A 1,2,3 =ST= { J [ ]

To check the last result

* ~~1, 2,3 r JL j

which is symmetric.

Next, when the first column of the array is made

to be orthogonal to the second and third one by adding

1/3 times second column and 1/3 times third colum to the

first, we have the following array
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0 0 0 -1 1
(2-29)

1

1
3 +1 0 0 0

-3

Now

A 1 , 2 , 3 , 4  LA - [; 1/6 1/61

1/31/6 1/6

1/6 1/6

Example 2: Let

10 14 28 32

8 8 4 8

4 12 48 48J

After performing column and row elementary operations,

the array will be as follows

1 0 0 0 0 1/4 0 1 0

0 1 0 0 0 0 10 0

0 0 0 0 -2 2 1 0'0 0o. M

0 1 12 -3

0 0 0 1

1 2 22 -4 0 S N

0 -2 -23 4
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Making the rows of T orthogonal to that of M by

adding multiple of third row to rows of T we have

S10 0 0 9- -z 1Fi 0 0 0 I
010-23 -31 +io

98 31818

0 0 0 0 -2 2 1 0 0 0 0 M

O 112 -3

0 00 1 s N

1 2 22 -4

0 -2 -23 4

Finally, we can make the column of S to be orthoqonal

to that N (i.e., StN=0). Using multiples of columns of N,

we get the following array

11 5. .1Ll 0 0 0 1

1 00 936 181

0 1 0 0 -23-31 16 0 i 0 018 18 18

0O0 0 0 -2 2 1 0 0 0 0 M'

12 -3

S 0 1 s N

22 -4

-23 4

Now, we can calculate all kinds of generalized

inverses.
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To find A ,2,3-inverse or A1,2, 4 inverse using the

technique given in theorem (2-8) and (2-9), we have to

establish a technique to find T or S such that (2-15)

or (2-21) holds. That means to find A ,2,3-inverse we

have to find T such that

TM = 0 (2-30)

The direct way to find T is to add a multiple of

rows of M matrix such that (2-30) holds because this will

not affect the canonical form given in (2-14). In matrix

form we can write T as

~T = T + K M

where K is chosen such that (2-30) holds, i.e.,

(T + K M) Mt = 0.

This implies that

K = -TM 
t (MMt

) - 1

Now the following theorem is clear.

m*nTheorem (2-10)-: Let AEC , M,TS,N be defined as

in (2-34). Then the following holds
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a) A1, = S T
1,2,

b) A1, 2,3 =S T = S(T-Tkit (1M t) -IM)

AW t -it
c) A = S T = (S - N(N N) N S)T1)A,2, 4

d) A1 ,2,3, 4 =S T

Proof:

It is sufficient to prove only part C. From theorem(2-9)

it is sufficient to calculate S such that

STN = 0 (2-31)

holds. This can be done by addinq multiples of columns

of N to that of S. That is,

IV

S = S + NK (2-32)

Substituting (2-31.) we have

(S + NK) N = 0

(S tN + Kt N tN) = 0

K t (N t N) = -St N

But since (N tN) is nonsingular matrix, we have

Kt = _StN (NtN)-1

K -(N+N)-] NtS

Substituting into (2-32) we have
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S = S + NK

= S-N (NtN) 1 Nt S

that is A will be
1,2,4wilb

A1,2,3 S T

= (S - N(NtN)-INts)T

= ST - N(NtN)-1NtST

= (S - N(NtN)-1NtS)T.

To apply this theorem let us consider the example

). T can be calculated as follows

In the same way S can be calculated as follows

T = S - N(NtN)T1 N S

3 7- 0-

I ~ ~ ~ ~ ~ E 0____________________]__
11 L 1J



(NtN) 1 1F2 -1~

- 2
1NN- ___ 1- 02 -1

01 01 010-T i

L1 1 -2

' 2J0o. 2~ 1 ;. 0o , [l

= 3

* 1 3

To apply that to another example, let us consider

example (2 ) to calculate S.

tN) - [1 2 0 22 - -J 12 -3 -! F1.157 -2 6.

22 -4 L-216 42 i
-23 4

(NtN) 1  f -- 42 +21 I

2(969) 1+216 1157J
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= 42 216 12 0 22 -23 :0 1;

0! 0-3 1 -4 41 0 0
S2(969) -

1 2 22 -1 L216 11571 1 2
0 -2 -23 4

-174 4797
1

= (969) -62 -6388

-557 -626

442 1904

The General Solution of the System

Ax = b: Let AECmn and beCml. Let P,Q,M,N,T,S

be defined as in Section 2.2. It is proved in Appendix A

theorem(A-1) that there exists a solution for the system

* Ax =b if and only if

AA b=b.1

In this case the general solution is

X = A1 b + (In - A 1A)Z

where Z is arbitrary. Using the special generalized in-

verse given in previous section,.i.e. A =ST , we can check

the consistency condition of the system Ax=b and moreover,

we can find the general solution in an easier way. This

is clear from the following theorem.

K3I
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Theorem _"-11): The equation Ax.b for A-Cmn

and bECml has a sol.ution X .:CLn  if and only if

Mb = 0 (2-33)

In this case thE general solution is given by

X = (ST)b + NZ (2-34)

where the matrix Z is arbitrary and the matrices

M,S,T,N are defined as in Section (2-2).

Proof: For any A c C there exists nonsingular

* * matrices P ,and Q such that the following holds

PAO[Irl 'I
0 0

Ax = b has a solution x iff

PAX = Pb has a solution x iff

PAX-I Pb has a solution x iffPAO -x = Pb has a solution x iff

(PAQ)y Pb has a solution y; x=Qy iff

0Io

X y S N 1 1 =SW +NZ iff
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S[Tb X = SW+NZ iff

Mb=0 ; X - STb + NZ where Z is .an arbitrary matrix of

appropriate size.

Remark: The solution X = (ST)b for the system

Ax = b is a particular solution of Ax = b, and NZ is the

general solution of the homogenious equation Ax=0.

Example ( 3 ): Consider the system Ax = b with

A = 6 9 5 b U
-1 -3 3 05

* To find the general solution using both methods, we must

calculate the generalized inverse first.

Using the elementary operation S, we can write the

following array:

01 000 100

0l 0 0 -2 0

0 0 0 0 5 -2 10 0

1 -2 3 -3 I

0 0 0 1 I 0 0

LO 1 -3 0
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To check the first step

PAQ = i L

8 0 0 0 0 1 0 0 0!

-2 1 L 1 02 0 1 0 0

L5~ i -2 1 I2 0 0 0000
2 10 0 5 -2 0

A ST1,2 0 0 -2 1 0 0 0 0L:~i 10 0 0 0

0 1 2 1 0

II To check the consistency condition

-- -3 3 0 0o0 L511
-2 1 Ot

= 0 : 11-0 , 1 0 5

Thus, the system is consistent and has the following

general solution:
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X A I b + (I - A I A) Z

00 0 5+ 0 i 00'- 0 0 0 6 95

0i 5 00 0 0 0 1 -3 3 O

-2 1 0 0001 -2 1 00 001

5) 0 - 57 r1 r3

3 L O 0 - 3 0 YOL_0-

Using the second method, we can first check the consistency

condition as follows:

Mb -2 0 = 0

The general solution is

X - (ST)b + NZ

5 -2 0 3

0 0 0 51 0

-2 1 0 -3 0
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r7
I-3 - -3

L0 +V +W

It is easy to see from previous calculation that

the second method isimuch simpler.

Remark: The columns of N matrix are the basis for

the null space of A.

Another Technique for Computation of A
+

Theorem.(2-12): Let AcC m on and have rank k < min

(m,n). Let A = BC , where rank of B = rank of C = k ;

BCC m n and CCrn . Then (BtB)-I and (C Ct)- I

exist and

A A+ = ct(C Ct) - (B+B) Bt
1,2,3,4

Proof: Substituting in the four axioms by

(2-35), we have

CAA +A = B(C C t ) (C Ct) " 1 (BtB)- (BtB)- (BtB)C

= BC =A

and

* i44
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A AA +  = (c ) (BtB) (1t 13) (C C t ) (CC t )  (B t13)

Ct (cc ) I(BtB)IB
t = A +

and

AA + = BC Ct(CCt)I (BB)-I B
t

= B(Bt B)-IB t is symmetric

and finally

A~A=t(C (BB 1B

=Ct(CCt) -

Theorem (2-13): Let AcCman let P, ( be nonsinqular

matrices such that

PAQ r 0 then

L0- j
cm. Cr.n

A BC ,BFC r CC rn

where B = p-1 [Irj

C [I1
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Proof:

BC P 1  [I o-

Generalized Inverses of a Specified Rank

The purpose of this section is to compute A I and

A2  of a specified rank. In chapter I we proved that

the rank of A1  must be greater than or equal to the

rank of the matrix, i.e.,

J'r "R(A ) Z min(m,n).

It is clear that rank of A2 will be less than or equal

rank of A.

menNow let AECm  . Let P and 0 be two nonsingular

matrices such that

Ol olPAO

Let P and 0 be partitioned as follows

T (K)

= M, K) [s(K)JN (Kj (2-36)
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where T(k ck.n M(k) (--k)m S(k) cnk and

M(k)C cn(n-k) where 0 z: k L rin(rn) and the following

theorem uses the partitioning given in (2-36) to compute

A1 and A2 of specified rank k.

Theorem (2-13): Let AECmn Let P and 0 be non-

singular matrices such that

PAO Q OEH
.0

Let T(k), M(k) , S(k) and N(k) be given as in

). Let Ak) and A(k) denote A1 and A2 of122

* specified rank k, then

Alk) S(k) T(k) r/ k Z min(m,n)

A (k) s(k) T(k) uL k - r

Al  = S(r) T(r) ST1,2 =S

where S and T are given as in Section (2-3).

Proof: The proof will be easy if we notice that

S(k) T(k) = [ 0 P (2-37)

To complete the proof, substitute (2-37) into the first

and second conditions of generalized inverse as follows:
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C-."

A(k) A= ' r PP 1 r10 00 01 00

[I jP A for k >r,, -oO

P-1 :1k 0-1 for k <r
_O+ o0

This implies that

WA(k) - (k) T(k) ; k > r
..

Substituting in the second condition we have

A(k) ,A A(k), - Q1 jr O Q 1 o F[kj.- P

:Lo IOJLo a!Lo

rk = Ak) for k < r

0 I P  for k >. r

0 0 0

This implies that

A(k) = (k) T(k) k < r

i i. I i - i1 48



,xaple( 4):

Given

A= 4 2 6

3 3 4

then, one can construct the following array

1.10 0 '1 00

0 1 12/3 -1/6 0

I 0 0 -1 -1/2 1

I - 2 -5/3

0 1, 1/3

0 1 0 1

From this array we can write

s (0) 0
= 0

S(2) 0 1
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1 -2 -5/37

= L 1/3

L o 1

T(1)

1 0 0

T" r ( 2)  -  
1[ 0 0 1

A.2/3 -1/6

and finally

1F 01

T(3) =2/3 -1/6

Now the generalized inverses can be computed as follows:

AM 0 , the trivial solution for XAX=X.
2

A2 "LEE5
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A 2 r 2
o - 12/3 -1/6 o2

10 0'
A1  , r-

S1/3 12/3 1
L

2/[3~ -1/6 0

i -5/3 F 1 0 01

(3) 2/3 -1/6 0A L  =0 1 1/3 /3-60

_0  0 1 - -1/2 1

4/3 7/6 -5/3

1/3 -1/3 1/3 1

I-1 -1/2 1

I
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III Matrices Over a Polynomial Ring

in Several Variables

Introduction

The purpose of this chapter is to establish an algorithm

to compute the generalized inverses for the matrices whose

elements belong to a polynomial ring in several variables

having coefficients which are complex numbers. In the

previous chapter, we established many algorithms to com-

pute the generalized inverses for constant matrices using

reduction of the matrix to the following canonical form:

I rl 0 1(3-1)

In the case of matrices with polynomial elements in

several variables, it is not true that all matrices can be

reduced to the form (3-1). To study the existence of

generalized inverses of those matrices, we have to reduce

the matrix to another simple form called the Smith Normal

form. Thus, the study of the existence of the Smith form

for matrices over the polynomial ring will be a necessary

* step to characterize those matrices which admit generalized

* inverses and to compute them in case of their existence.

In the next section, we will study the existence of

the Smith form for matrices with polynomial elements.

Conditions under which a matrix over a polynomial ring is
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equivalent to its Smith form will be investigated. A

systematic algorithm to reduce a matrix to its Smith form

will be established.

In the third section, the necessary and sufficient

conditions for a matrix over polynomial ring to have a cer-

tain type of generalized inverse will be given. The com-

putation of generalized inverses for matrices with con-

stant rank size having Smith form as in (3-1), will be

established.

In the fourth section, the case of variable rank

matrices will be investigated. The problem of finding

solutions of the system Ax = b in the case of~variable rank

matrices will be discussed, since it was n(-'t treated before

in any preceeding work. -

Throughout this chapter, C will denote the field of

complex numbers. Let R = c[ele 2 ,...,e] be the ring

of polynomials in the variables e1 ,e2 ,...,e n with co-

efficients belonging to C. Let Cmen(6) be the vector

space of all matrices of order m-n and their elements

belong to R.

Reduction to Smith Form

Consider any mrn matrix A(e)c Clln(e). The Smith

form S(8)c Cz"'n(e) of the matrix A(e) is defined to be
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S(s, = [diag [ei(e)] O] ; m<n

S (6) = [aag [ep(6]] m=n

S(e) = diag [eilf ; m>n

where e (0) are the invarient polynomials over R of A(e)

given by

d. Ce)

ei(e) = (e) (i-1,2,...,min(m,n))

where do(e) 1 and di(e) is the greatest common divisor

(g.c.d.) of all the ith order minors of A(8).

Example( 3-])

Given

X-1 X+2

A(X) = L 2 X2 122
LX-2 X2-3X+2 X2+X

then, one can compute the following
-d o M ( A - 1 ,

d (X) = 1

12d2 (X) = 1 ,

d3 (C) - X(X+1),

and the invariant factors of A(M) are as follows:
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1e1(X) -- T = 1,

1e2 (X) = T = 1,

and

e3 (X) \ 1(X+) = X(X+l)

Thus the Smith form S(A) associated with A(M) is

1 0 0

SW 0 1 , 0 i
S(X0 0 X(X+l)J

Example (3-2)

For

[S 0 11
A(s,z) = sz+l1

dl(s,z) = d2 (s,z) = 1 d3 (s,z) = sz(sz+l).

Thus the Smith form associated with A(sz) is

S 0 sz(sz+ 2
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Example (3-3)

Given

s+1 1+z(s+1) 0 (s+1)zz2

A(s,z) = s sz+1 -(s+1) (s+z) sz 2

o s(s+1) (s+1) s(s+1) sz 2(5+1)

s+l 1+z(s+1)-(s+1) (s+2) (s+1)zz2

then, one can compute the following d 1(s,Z)-

d 2 (s,z) = 1, d 3 (s,z) = 1(s+l), and d 4(s,Z) = (5+1) 2(s+z).

Thus, the diagonal elements are

e 1(s,z) = e 2 (s+z) 1

e (s,Z) = (s+1) - S1)
3 1

and

e (SZ i SA±.) 2 s+z) = S(s+1) (s+z).
4 (s-s-)

Finally, the Smith form S(s,z) of A(s,z) is

1 0 0 00

S (s,Z)= 0 1 0 0 0

0 0 (8+1) 0 0
0 0 0 S(s+1) (s+z) 0
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Equivalence of a Matrix over R to Its Smith Form

A matrix A(6) F Cnn (8) is said to be unimodular

if IA(6)I is nonzero complex number. It is clear that

any unimodular A(6)eC nn (8 has inverse A- (8) which be-

longs to C n n (8). Let A(6) and B(M) be matrices which

belong to cm:%n (8), then A(8) and B(8) are said to be

equivalent over R if and only if there exists two

unimodular matrices P(8) C IT-(8) and O) E cnn (8) such

that:

P(8) A(8) 0(0) = B(6). (3-2)

It is easy to show that equivalent matrices over

R = C[ 11 21 ... 1
- have the same Smith form over R. The

converse of this fact is true in the case of matrices

over the field R in one variable since A(8)e C mn(8) in

one variable is always equivalent to its Smith form.

Although it is true that two matrices A(O), B(8)

are equivalent over S --R [Z] (ring of polynomial in

variable) if and only if they have the same Smith form,

this may not be true for the case of matrices over

R =CKI1r82,...8 (polynomials of more than one variable).

The following two examples illustrate this fact over the

field R C 1s,zI (see Frost and Storey
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Example (3-4)

The following matrices

A(s,z) = 0 s+z 0 B(s,z) = S+z

0 0 S0 0

have the same Smith form S(s,z)

S(sz) = s+z 2
0 0 s (s+z)

but there is no transformation of equivalence over

R = C [s,z] such that (3.2) holds. Thus, A(s,z) and

1. B(s,z) are not equivalent. This is clear since they

have different rank at s=i-O.

Example (3-5):

The following matrices are not equivalent although

they have the same Smith form:

[s 0 11 S 0 01

A(s, = L sz41 B(sjz) L sz+i 1j

0 0
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Their Smith form is

a 1
S(s,z) = 1 0

1O 0 SZ(sz+l)J

Frost and Storey 18] [9 investigated the

sufficient and necessary conditions for a matrix

A(o) Cm (e) in two variables to be equivalent to its

Smith form. These conditions involve anew concept called

zeros of a matrix over R.

Zeros of a Matrix over R

For a matrix over R[S] it is certainly the case

that if the determinantal divisor dits) is removed from

all the ith-order minors, then the remaining polynomials

cannot be simultaneously zero for any value of S. This

result does not extend for matrices over R[8,

It is quite possible that on removal of the deter-

minantal divsor di(s,z) from all the ith-order minors of

a matrix A(s,z) over R IzJ, the remaining polynomials

may all be simultaneously zero for one or more values

of the pair (s,z). Such value of (s,z) will be called

an ith-order zero of A(s,z).
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Example (3.6):

Let us consider the same matrices given in Example

(3.4). A(s,z) has zeros of first and second order at

(0,0) while B(s,z) has no zero of any order.

Example (3.7):

Let us consider the same matrices given in (3.5).

A(s,z) has no zero of any order while B(s,z) has zero

of second order at (0,0).

It is important to note that the Smith form S(s,z)

has no zero of any order. To prove that, it is quite

sufficient to note that the determinant of ith principal

minor is di(s,z) as follows:

thdeterminant of i principal minor
idl (S'Z) " d2 (s'z)

= e1 (s,z) -e2 (s,z),...ei(s,z) = 2  ,
1 d1 (s,z)

f.di (s,z)

di- (sz)

= di(s,z).

The Conditions for Equivalence Over R[s,

It is important to note that a transformation of

equivalence over R [s,z] preserves the zeros of a matrix

over R[s,z] . From this remark it is clear that matrices

over RIs z] having the same Smith form over R[sIzJ

but not having the same zeroes are not equivalent over
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R[SZ] . Applying this fact to matrices A(s,z) and B(Sz)

given in example (3.4), it is clear that both matrices

A(s,z) and B(s,z) do not have the same zeros:. Since

Smith form over RIs,zj has no zeros, it is clear that

a matrix over R [sz] which has zeros cannot be equiva-

lent to its Smith form over R[s,zI

As an example, note that the following matrices

A(s,z) = s+z 0 , B(s,z) = sz+i 3
0 0 s 00

are not equivalent to their Smith form because A(s,z) has

zero of order 1 and 2 at (0,0); and B(s,z) has a zero of

second order at (0,0).

An example of matrices over R [siz] which are

equivalent to their Smith form is as follows:

s+z 0 1 s 0 11

A(s,z) 0 s+z 0 , B(s,z) = sz+l 1

Note that both matrices have no zeros of any order.

Lee and Zak[ 19 J proved that lack of zeros of

any order is not a sufficient condition for the equiva-

lence of A(s,z) over R[s,z] to its Smith form. For

example the matrix
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z -s-li

A(S,z) =

~2

has Smith form

S(s,z) []

L z 2 -s 2 (s+l)

but A(s,z) is not equivalent to S(s,z) although A(s,z)

has no zeroes of any order.

Construction of Transformations of Equivalence

In the previous part we have investigated the

equivalence of a matrix to its Smith form over the ring

of polynomials in several variables. The question now

is how to construct transformation of the form (3,2) which

reduces the matrix A(6)C cm'n(8) to its Smith form S(8).

That is, to find unimodular matrices P(8) and Q(e) such

that

P(O) A(8) 0(0) = S(8) (3-3)

As we did in Chapter II, P(8) and 0(8) can be con-

structed using elementary row and column operations, if one

modifies the standard definitions of elementary operations

to include:
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1) Multiplying of a row (column) by an arbitrary

nonzero scalar constant,

2) adding to a row (column) the elements of another

row (column) multiplied by an arbitrary polynomial which

belongs to the ring Rf81 ,8 2 ,....,OJ , and

3) interchanging of two rows (columns).

The construction of matrices P(6) and Q(6) is, in

general, a difficult step. Frost and Storey

suggested a systematic procedure to reduce matrix A(s,z)

over the ring R [s,z to its equivalent Smith form using

elementary transformations. The first step in this pro-

cedure is to bring the matrix A(s,z) via a transforma-

tion of equivalence over R[s,z] to the form

e (s,z) A (s,z)

I1
where e (s,z) is the first invariant polynomial of

A(s,z), and A" (s,z) has the form

[1 0

A [~z [0 A (s,z)

It follows that A(s,z) is equivalent over R [s,z] to

a matrix of the form

~ :sz e 0SZ~lSz

0 e nsz) (8 n , ,63



By repeating this procedure for the matrix e 1 (s,z)Al(s,z),

we can find a transformationwhichreduces el(s,z)A 1 (s,z)

to the form

e2 (s,z) A" (s,z)

where A"(s,z) has the form

A"(sz)A 2 (s,z

That means A(s,z) is equivalent over Rjs,zJ to

e (s,z) 0 0

,0 e 2(s,z) 0

z0 0 e2 (s,z)A 2 (s,zd

This procedure can be successfully repeated until

A(sz) has been brought to its Smith form under condi-

tion A(s,t) is equivalent to its Smith form. This

procedure will be explained in the next example.

Example (3-8):

Given
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s+1 1+z (s+1) 0 (a+1) z z 2

S sz+1 -(s+1) (s-iz) sz 2

A(s,z) = 0 s(s+1) 5+1 s (s+1) sz 2(s+1)

s+1 1+sz (s+1) -(s+1) (s+z) (s+1)z Z

one can compute

e 1 s,z) 1

A(s,z) is brought using

1 -1 0 0

-S 1+s 0 0

p 1  0 0 1 0

and

1 -Z -(s+1) (s+z) -Z 0

0 1 0 0 0

0- 0 0 1 0 0

0 0 0 1 0

o 0 0 0 1

to the form~

where
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1[5(5+1) 2 (s+z) 0 2

A (S'Z) =~ l s+1 s (s+1) sz 2(s+)

L0 -s'(si-z) 0 0 J

Now e 2 (sIz) 1

Again, A (s,z) is brought using

P2 = s(s+1) 1 :10
and

*2 - 2
1 (s+1) (s+z) 0 -

0 1 0 0

02 0 0 1 0

.0 0 0 1

to the form

10

where
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(s+1) ~-(1+s(s+1) 2(s-sz)) s(s+1) 0-

1L2 sz (s+1)(s+z) 0 oJ

Then, using

s(s+1)2

p 3
is+z) +s(s+l) 2(s+z)

and

1 -s 0l

Q3 :1
00 l

A2 is brought to the form+ 1: 0  0
s(s+z)(s+l) 1

Finally, A(s,z) is reduced to the Smith form
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*, i

1 0 0 0 0

0 1 0 0 0

0 0 s+1 0 0

0 0 0 s(s+l)(s+z) 0

Using

P(sz) = [ ] , o  ]
and

[+03]= o 2Q3I 0]

Generalized Inverses of Polynomial Matrices of Constant Rank

The main purpose of this section is to establish anI
algorithm to compute different generalized inverses of a

given matrix A(e) , Cm.n(8). Throughout this section,

it is assumed that a matrix A(e) is equivalent to its

Smith form; i.e., to the following form:

0 
(3-4)

where a(8) is a diagonal matrix which belongs to
c(m-r) (n-r) (). That is, there exist two unimodular

matrices P(B), 0(6) such that
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P(e) A(e) Q(e) = Lr 0  (3-5)

The next theorem establishes the necessary and sufficient

conditions for a matrix A(e)c Cmen (5) to have generalized

inverses A1,2 () , A1,2,3() ,..., etc.

Theorem (3.1): Sontag [27]

Let A(S) Cmon (6), then A(S) has A - inverse

which belongs to cn'm () if and only if A(S) has a

constant rank r < min(m,n).

Proof: Suppose that A(6) has constant rank r,

then A(M) can be reduced to the form (3-1) using ele-

mentary transformation as follows:

P(O) A(S) O(S) = Ir ] 3-)

where P(O) and 0(e) are unimodular matrices, let

X - 0(e) io o (0)

It is clear that X is an A1 ,2(e) inverse of A(S).

69 -



Remark

By proper partitioning of the matrices P(e) and Q(6)

given in (3-6) in the same way as in the case of constant

matrices, i.e.,

[T(O)1
P(O) = LMIe)J Q(a) S(e) N(e)]

then,

A1 , 2 (e) = S(e) T(6)

Remark

In the case of full raw rank matrix A(6)C io (6) ,

i.e., rank of A(e) = m

A1 , 2 (e) = A1, (0)

Remark

In the case of full column rank matrix A(O)C C 'n(e),

i.e., rank of A(e) = n

A1 , 2 (0) - A1,2,4(e)
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Theorem (3-2):

Let A(6) be a polynomial matrix which belongs to

A"'(0). Let P(6) and O(8) be unimodular matrices such

that

P(e) A(O) Q(6) [r

where Q2(O) c C m)(r(0), then there exists A 2 (6)

with rank k < r in the following form

A() = (8)[L P(e). (3-7)

By proper partitioning of P(e), 0(e) as follows

P(e) =,A(6) S [(e) I N (e) (3-8)

where T(O) c k-m (e) M(e) C C (mk)-m(6)

S(e) ', Cnk(0) , and N(8) C cn(n-k)

A 2(e) can be written as

A 2(e) =S(O) TO8) (3-9)
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Proof: o -1(e)
A2(o) A(8) A2 (8) = 0(8) [ik J P(8) P_ (8) L 6(8

0(8) 0o- P(e)

= 0(e) [ lk1 Lk Ik [ LJ 0 P(e)

= 0(8) [f4] P(8) = A2 (8)LO 0 o2

This proves the first part; to prove the second part,

substitute (3-s into the relation (3-7) as follows

A2 [Ik P(e)

~(0)IN(e])J k [T3J ' [s81 )LO 0 HoJ0

= S(8) T (e) .

In the following part we will demonstrate the exis-

tence of different types of generalized inverses over

R = C [ele2, 8 .Oen]

Example (3 -9):

Given
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A(s,z) = z 1-z 2  0 1
L - 0 0 0

then one can construct the following array using

elementary transformation

1 0 0 0 1 0

0 1 0 0 :0 1 -sz 0 iT(T)
i I r

0 0 1 0 o 0 -1

0 0 1 0 S(6) N(OI 0

0 0 0 1
0

1 0 0 -sz

• 0 1 0 z2-1

The following matrix is an A1,2 ,3-inverse of A(e).

,0 0 1 0 s2

A1 ,2,3(8) = S(e) T(8) = 0 0

10 0

0 0 -1 0

=000:0 0 0

1 0 s2

.0 1 -sz
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One can check the answer by substituting in the first

three axioms ( ) as follows:

A sz 1 0 0 0 -1 [ sz 1 0
S1,2,3Z 1-Z 2 0 1J 0 0 0 sZ 1-Z 2 0 j

L- 0 0 Oj 1 0 S2 L7 0 0 .

0 1 -sz

s2 sz 1 0 1 0 0 0

z l-z 2 0 1 0 0 0 0

- 0 0 0 0 sz 1 0

20 1-z 0 1

2:= z l-z 2 0 1 A

L71 0 0 O

also

0 0 0 0 0 -1

A 0 A =,2,30 0 0 [=Z:2 0i 0 0 0

1 0 S2 1] 1 0 82

0O 1 -sz 0 1 -Sz

1 0 00 0 0-1 0 0 -1

= 0 0 0 0 0 0 0 =0 0 0 A1,3

0 sz 1 0 1 0 sz 1 0a

10 1-Z2 0 1 0 1 -Sz 0 1 -Sz
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and finally

z 1 ol[o 0 0-1
A A1 ,2, 3  -sz 1-z2  0 1 0 0 0

- 0 0 OJ [0 1 -szJ

1007

0 1 0

Also, we compute A2 (e) with rank = 1 as follows:

.0 [ 0 S21 0 0 0-

A2(e) = 0 - 0 0 0

*1 1 0 s2

.01 0 0 0

and finally we compute A2 (8) with rank = 2 as follows:

0o '0 ] 0 0
A2 (el 0 0 1 -sz = 0 0 0

1 0 1 0 S2

0 1, 0 1 -sd

To compute A1 ,2 ,34 (6), it is necessary to satisfy

the relation

9t
St N-a.
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Example (3-10)

Given

Fs+Z 0 1

A ~ ~ 0 SI
then, one can construct the following array

1t 0 0 1 0 0

0 S-~z 0 0 1 0

0 0 s(s-iz) S 0 -1

0 1 0(~z

It is the case of nonconstant rank so we can construct

only A 2(s,z) with rank -1 as follows

A 2 (SZ) 0 0 0] 0 o

Example (3-11)

Given
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A(s,z) 0 1-z 1 0

then one can construct the following arrey

1 0 0 0 0 0 1

o o 1 0 0 1 0

1 0 0 0

0 1 0 I-z
1~0 -S 1 sz

.0 z 0 1-z 2

Thus A11 , is

1 0 0 0O 0 1
A 1 , 2 , 3 (e) = 0 1 0 1i 0 -sI

0 -si1 1 0J

0O z 0.

= 0 0 1

1 0 -s

-s 1 2

LZ 0 -s z

and A2 (0) with rank m2 is
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1 0 F 0 0 1 -o" 0 i"
Ao i o -s

0 -s 
-s 0 s2

0 Z z 0 -sz

Example (3-121

For the matrix

A(s,z) = [2 SZ2  S3Z+SZ2+SZ

we can construct the array

"1 0 0 1 0

0 0 0 -SZ 1

-S Sz 1+S 2

L1 -Z -S

A1,2 (Z) = [ =]

The Matrices with Variable Rank

For A(6) mn (e) and A(B) does not have constant

rank, the problem of finding solutions of A (e)x(8) - b(8)
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arises since it was not treated by Sontag [273 and others.

Throughout the next section it will be assumed that there

exist unimodular matrices P(e), 0(e) belonging to

cmOm(e) , cnon (6), respectively, such that:

P(8) A(6) Q(6) = [ A ie = Ao() (3-10)

where A (0) is the Smith form of A(e). Such matrices were

treated by Frost and Storey[8,9 ], and Lee and Zak[ 19

when matrices were reduced to their equivalent Smith form:

Theorem (-a) :

Let A(e%)C Cmn , b() C cm1() , and A(6)

has nonconstant rank k(e), i.e.,

1 < r < k(O) <min(m,n).

Let P(6) , O(e) be unimodular matrices such that:

P(6) A(e) Q(6) = [r O )e

then the following partitioning of matrices

e) ,J (e) I (3-11)kIn L S(e: N (et0

are equivalent over R = C [1,...,8]
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Proof: Proof is similar to constant case of A.

Theorem (3-4):

Let A(e) C cm n(e), and A(6) have nonconstant

rank, i.e.,

1 < r < rank ofA() < min (n,m),

and the hypothesis of theorem (3-3) holds.

Then the following set of equations

A(e) X(e) = b(6) (3-12)

has a solution X(O). Cn'l (6) if

M(O) b(e) = 2(e) z(), (3-13)

for some Z(8)E C(n-r) l(0), and in which case the general

jsolution X(e) is given by

X(e) = S(O) T(e) b(e) + N(e) Z(6) (3-14)

where S(O), T(e), N(e), f2(e) are given as in (3-11)

Proof: For any A(e) C m (0) there exist unimodular

matrices such that

P(e) A(()) Q(O) - [i 0 31

where P(O) e cmm (6), and 0(6) £ cnn (6). A(e) X(O) = b(e)
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has a solution X(M1 iff

P(e) A(Q) X(Q) = P(e) b(e) has a solution X(9) iff

(P(6) A(6) Q(6)) Q- (8) X(O) = P(e) b(O) has a solution X(6) iff

y(8) = P(O) b(O) has a solution y(6)=Q'1 (e)-X(e) iff

I(r)O= b(1 ; P(8) = T(A)

y(0 =[~-*) X(e) = (e) y(e) = s1N(6)] ~~o ns~e)

The last set of equations can be written as

W(0) = T(M) b(e) ; Q(6) Z(O) = M(6) b(O)

X(8) = S(8) W(e) + N(O) Z(G).

Thus, the solution of X(6) X(G) = b(O) will be:

X(e) = S(e) T(O) b(e) + N(e) Z(O)

in the condition that

((O) Z(e) = M(8) b(O), holds for some Z()cC(n-r)-l(8)

with appropriate size.

Example (3-13)

Consider the following system

1-A x 0 X(I)4: M X(S+Z)
z" Sz-x 0 x (, 2+SZ.

Using the elementary operations we can construct

the following array:
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1 0 0 0 1 0

*, 1

0 IX 0 0 -Z 1

1 0 -x -S

0 0 0 1 0
1 0 i-X -S

o i z 1

To check the consistency condition, one may cal-

culate

[x 0 0] d(e)1  [-Z 1] SZ

c (e)

that is

X a(6) = -ZX(s+z) + X2+SZX, and d(O) , c(O) are

arbitrary polynomial. r 2f-z,,+z)+X+SZ 1  X_-,
Z(O) = d() l d(e)

c(0) Lc(eJ

The general solution will be
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X S T b + NZ

1 1J [i x] [Szz; + 0 -x: [) X=Z]

0 1 z 1

x (s+z) -xd (e) -S c (e)

0' + c (e)

(1-X)d(e) -S c(e)

LX-Z2+Z d(e)+c(6)

=X(s+z) 1 + d(e) -X + c(e) --S + 0

a4 0 1 0

1 1-A -s 0

Lo .z 1. L-Z

choosing d(6) = Z c(e) = - x

x X X(S+Z) 1 -z X5 0

o + 0 + X + 0

1 Z-lx A S 0

o 2  -x X-z

= 2XS

2ZA s+z
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IV Riccati and Lyapunov Matrix Equation

The main purpose of this part is to establish

methods to solve algebraic Riccati and Lyapunov equa-

tions. The Lyapunov: equation

AX-XB = C (4-1)

and the Riccati matrix equation

AX-XB + xDx = C (4-2)

where the matrices A, B, C, and D have elements which belong

to the field of complex numbers.

Riccati and Lyapunov- equations are very important

to establish methods to enable any one to do systems

decomposition, i.e., transform large systems to uncoupled

small subsystems. Such process requires the solution

of the equations (4-1) or (4-2).

At first the elements of all matrices are real or

complex numbers. The notion of strong similarity of the

following pair of matrices:

0(4-3)

and
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04 B (4-4)

whenever the equation (4-1) holds and

FA C I -X A AX+XB+C - A(4-5)

NOB~ LOII 0 B -

Equation (4-5) holds whenever the equation -AX+XB+C=O

has a solution (i.e., equation (4-1)).

For applying to systems decomposition consider the

following differential system of equations.

[Adx(t) C x(t) (4-6)

dt

* *let

xt) =- x I y(t)

where

AX - XB = C (4-7)

This system is reduced to

d MOB = y(t) (4-8)
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So thu systems (4-6) and (4-3) are strongly similar under the

condition that (4-1) holds. System (4-8) is uncoupled sub-

systems.

Now consider the fully coupled differential system of

equations

dx(t) - x(t) (49)dt MCA-9

applying the following transformation to (4-9)

x(t) = 0 y(t) (4-10)

where X is a solution of (4-2) with matrices coefficient

defined as in (4-9).

dy(t) r, [Lo. 1 [LfQ]yt (4-11)
dt C A y(t)

B+D ] y(t)X8CXD+Aj !:I

-BDX D y(t)

XB+C-XDX-AX Y ( t )

+XD+Aj

Equation (4-11) represents a partially coupled system

instead of (4-9).
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Applying another transformation as before using

Lyapounov equation (4-1), the system will be reduced to

dt A+XB-DX Z(t)
dt LO A+XD]

In the next two parts we will establish the different

techniques and approaches used to solve equations (4-1)

and (4-2).

Solving Lyapunov Equation

Consider the linear system represented by

dx
d- = Rx (4-12)

where

R !AC1  (4-13)

where A, B, C are n-n matrices whose elements are complex

numbers. The matrix R is similar to R* AJB whenever

the equation AX - XB = C has a solution Z. In this case

it is clear that

TRT 1 (4-14)

- - where
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T = (4-15)

where X is a solution for Lyapounov equation (4-1).

First Technique. Theorem (4-1): Roth ( )

A necessary and sufficient conditionthat equation

(4-1) has a solution X where the matrices A, B, C are

square matrices of order n'n with the elements in the field

of complex numbers is that the matrices R and R* given

in (4-13) are similar.

Letting fA( ) and fB( ) be the characteristic

polynomial of A,B respectively then

fA(R) = - ' fB(R) = ] (4-16)

Proof:

The first part Of the theorem is clear using the

following equation

R [ I [ -.. ...... (4-17)

if X is a solution of (4-1) then

IR I [ i4 S =R* (4-18)

R - (4-19).. 0 1 o :-- 0 0'
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fA( 0 ~U~ 0 f(B)l10[ (4-20)

fA (R).. fB (4-21)

0

This implies that

M = -XU (4-22)

In the same way

! I -X [f(Al 0 I X

fB(R) B)

This implies

0 A ]

:1 Theorem (4-2)
The equation (4-) ha. a solution X if the following

pair of equations ha. a coson solution:

M + XU -0 (4-24)
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M - NX - 0 (4-25)

where M, U, M and N are as given in (4-16). Moreover,

any common solution will be a solution of (4-1).

The necessary and sufficient condition that (4-1)

has a solution X is that the equations

M U-U =M (4-26)

and

N-- M = M (4-27)

and

M U =-N M hold. (4-28)

In this case the solution will be expressed as

X = N. M - M u- + N'- N M U"- (4-29)

Proof:

The first part of the theorem is clear using (4-22)

and (4-23) in theorem (4-1).

Equations (4-26) and (4-27) are the consistency con-

dition of each of the pair of the equations and equation

(4-28) is the condition that the two equations have a

common solution.

Example (4-1): Solve the Lyapounov equation (4-1)

for
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Solution:

1 0 1 3

R= 1 0 1 2

0 0 0 -1

') 0 0 -1.

fA(X, = 1 2-

fB(X) = 1

= 0 0 0 -4
f0A (R) 0= Lo2

00 0 2

0 0 0 2

2 0 20 2

fB (R) a 2 0 2 2 M [2 0 2 2 0

0 0 

0 0 0 0

Firat, calculate generalized inverses
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~[m 1 -0.

Check of consistency conditions

MU-U -H

NN -M M

and

MU -NM [

A solution is

A A-A

X N - M U + M- N MU

- 0 2 0: ::][ :]
+ : : : :; :

4 Moreover, we can find the general solution by finding

the general solution for each equation. The general

solution for the first equation iss
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x 0 - mU-+ Y 1 (1- U U) (4-30)

1-

where L m are arbitrary.

= N M (I-INrN)Y2  (4-31)

0 2 1] 0 0] -1 2 , 9 1r

So the general solution will be
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The Second Technique.

Theorem (4-3): If f(X), f lW) are polynomials

of degree n of X with coefficient in the field of complex

numbers such that

f (R) - (4-32)

fa(R) - (4-33)

where R = ,VF-C , if V-1 exists, then a solution X of

N-VX = 0 is X solution of (4-1). Moreover, if M1 exists,

then a solution X of N + XM - 0 is also a solution of

(4-1).

Proof: The matrices f (R) and R commute which implies

0 0. N -B
VA V+WAV A

This implies the following identities

AV VA , AN VC + NB (4-34)
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if X is a solution of N-VX=O , then, using (4-34), the

following holds

0 = A(N - VX)

- VC + NB - AVX

= V(C + XB - AX)

and since V- 1 exists, X is a solution of (4-1). In

the same way, we can prove the second part.

Example (4-2)

Solve the same problem in example (4-1)

f(X) = IR - XII - (X2 _ X)(X 2 +))

All the possible polynomials are:

Case-1 f(A) = X 2 _

Case-2 f(M) = A 2 +
Case-3 f(A) - A2

Case-4 f(A) - A2 . 1

Case-I:

f(R) 0 -

0 -
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Consider the equation

N + XM = 0 , M-  does not exist, has the general

solution

X - NM + Y (I - M ) (4-35)

12+_1  m arbitrary

Substituting into the equation (4-1) by this solution,

we obtain the condition on ',m' to make (4-35)a solution.

1 , m arbitrary

i.e., the general solution is

1-

Case-2

f(r) - 2 + R

2o 2 2 o  o
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Consider the equation

N - VX , V is singular, has the general solution

X = V N + (I - V V )Y

= , , ' arbitrary

Again, substituting in equation (4-1) we have the same

solution.

Case-3

f() = R

1 0 101 o0 1 o0B00 01
The theorem cannot be applied.

Case-4

f(X) - R2 _ I

10-10
.mi-i 1 f

0 0 0 Q

The theorem cannot be applied.

98



So the previous theorem is applicable only for the cases

where

f(X) is either fA( or fB(A).

The Third Technique

In this part, solutions for Lyapounov equation will

be obtained in terms of the principal idempotent and

nilpotent matrices associated with the matrices A, B.

To solve equation (4-1), the following more general

equation will be considered

AXE + DXB = C (4-36)

If A is an n-n matrix having elements which belong

to the field of complex numbers and {ai} is the set

distinct characteristic roots of A, then A has the

following representation:

A E (ajAj+Aj) m<n (4-37)

j-1

where the matrices {Aj} , {A1 } form a complete set of

principal idempotent and nilpotent matrices with the

following propertys

m

A1 A-JS, A D Z A j I j J- 1,2,...,m (4-38)

i-i
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AJ k= for j 0k A.A =AA.=A. (4-39)

Theorem (4-4)

Consider the following matrix equation

AXE + DXB = C (4-40),

where the matrices A. E, D, and B have the following

representation in terms of a complex set of idempotent

and nilpotent.

ja

A=Z (aj))+Kj
j=1

jb

B=Z (bjBj + B)

j=i

Jd

D (d .D. + 5 J)

Je

E Y4(ejE +j)

with

S0



DjC = CB k = 0

D C = CEk = 0

for all possible j,k and whenever a ej + dkbe = 0 , then

Ai Dk CEj Be = 0

The equation (4-40) has a solution X given by

Sjd ja Ae (4-41)

S Ij=l i=1i ai dkbe

Lemma t4-I)

The solution for the Lyapounov equation (4-1) given

that AB are given as in (4-41) is

ib ia

ai - bj
J-i i-1

Example (.4-;): Solve the same problem given in

Example (4-1.
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A a aA 1 + a2A2

0 01

1o~~ + 0i:

B - b 1 + b2 B2£1 1 E2 2
[= 0 - [1

Notice that a1 -b 1=0 and

the solution is given by

AICB,2  A2 C 1  A2 CB2--- --- + 2-- -2
0-(-1) 1-(0) 1-(-1)

Example (4-4Consider equation (4-1) for

- 1102
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0 -5 -1 0- 3 -2 , 4 -60

S-2-1 -tl3

A - 1 A1 + 2 A2 + 3 A3

=[i :?/.31 : +3I / i

-11/2 -11f 0 18 42 1 -25/2=1 + 2 +3

0 7 14 
-6 1 

0

0 -3 -6L 3 7 O 0 0

Cr_ ii -

al- 2 - 2 -3 2 -0

10

fo

b1 + B + b2B

1
t check that

aI -1 a2  -2p a 3 -3 p b, 2# b2  1 therefore

a 1 - b- 2 a 2  b h 1 ,0

~and
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A 1C B2 =0

A 2C B 1 -0

and the solution is

X A AC B1 + A CB+ A CB +A CB1

6 17/2 1

-4 -6 0

2 3 0

Check that X(IB~) Xi( ffj = ~ X 0

The Fourth Method

This method is sufficient to obtain all solutions

for the Lyapounov equation (4-1). Equation (4-1) can be

written in the vector form as

Fx- (4-42)

where ;, are n2 ..1 elements and F will be n2 . n n2 . This

method is obviously not suitable for large n.

For AandfBland C C 2-2 and

11 aai a1 [b 11  b 121
* 121~ 221 L21 b2 2
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F can be expressed as

211

Example (4-5.): Considering the same problem in example

(4-1)

1 0 0 0

*F= 1 2 0 0 C

Solving the system

*r r Z
we obtain the general solution

41l 11.

i-(ST) 'j+ N Z

1 0 0 1 0 0

0 010 0 0 + 0O Z

001 -1
00 12 

1

* 105



i.e., x =

consisting condition-holds

Mc 1 [ 0 oi0

21



V Conclusion and Recommendations

Conclusion

An algorithm for computation of various kinds of

generalized inverses is established for the matrices over

the field of complex numbers. The existence and compu-

tation of various kinds of generalized inverses over the

ring of polynomials in several variables are studied.

Equivalence of a matrix to its Smith form over the rinq

of polynomials in several variables is studied. A new

algorithm for finding the solution of Ax = b over the

field of polynomials in several variables is established.

Recommendations

1. Implementation of these algorithms on computer.

2. Study of sufficient and necessary conditions

for I matrix over the ring of polynorials in several

variables to be equivalent to its Smith form.

3. Explicit solution of Lyaponov and Ricate equa-

tion in terms of qeneralized inverses. Extension of

Jones work [15, [1II, 11]L

4. Applications in the field of control theory.

Bxtention of the work oft

a. Frost and Storey (Contrability and Obser-

b. Das and Ghoshal (Construction of Reduced-

order observes)
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C.Lovass-Nagy, Powers, A1-Nasr .2.
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Appendix A

Basic ApDlications of Generalized Inverses

Solution of linear equation Ax=y:

Theorem (A-1):

A necessary and sufficient condition that Ax=y

is consistent is that

AAy =y (A-I)

The general solution of the consistent equation is

x =Aly + (I - AIA)Z (A-2)

where Z is an arbitrary vector.

Proof:

Sufficiency: if (A-i) is true, then Aly is a

solution.

Necessity: Suppose that Ax - y is consistent,

then there exists w such that

Awy y

AA1 (Aw) -y

AA 1 y y

A-i



To complete the proof it is sufficient to prove that (A-2)

is a solution for Ax-y. Substituting (A-2) into the

equation Ax-y we have

Ax - A(Aly + (I-AA)Z)

= AAly + AZ-AAlAZ

= Y + ZA =AZ

-y

To prove that any solution x can be derived from

(A-2)# we can choose Z as follows:

Z2- x - G

x -Gy + (I-GA)Z - Gy + (I-GA) (x-Gy)

-Gy + x - Gy - GAx + GAGY- x - GAx + GAGAx

-x - GAx + GAx - x

Theorem (A-2):

The necessary and sufficient condition that the

equation AXB-C has a solution is that

A0 1 CB B C ,(A-3)

A-2



in which case the general solution is

x - A1CB I + Z - A 1AZBB1  (2-4) (A-4)

where Z is an arbitrary matrix.

Proof:

Sufficiency is trivial since A 1CB1 is a solution.

Necessity proof: if the equation is consistent, then

there exists X such that

AXE + C

AA (AXB)B 1B =C

AA CB 1B = C

Substituting X given by (A-4) in AXB . we have

A(A 1CB 1+Z-A 1AZBB )B = C+AZB-AZB-C. Any solution of

h. AXB-C is obtainable through (A-4) by a suitable choice

of Z. For example, X can be obtained if we put

Z -X-A 1CB 1

Solution = A CB I + (x-A 1CB) - A A(x-A CB 1 ) BB

- x A AAxBB 1 + A 1 A A1 C B1 B B1

0x -A 1 A x B B1 + A C B1

A-3



=--A 1 C B +AIB=X

Theorem 
(A-3)

Let A(m.n) , C(m.p) , B(p.g) , D(n.g) be given

matrices. A necessary and sufficient condition for the

consistent equations AX=C , XB=D to have common

solution is that

AD = CB

in which case the general expression for a common solution

is

x = A1 C + DB -A1ADB + (I-A1A)Z(I-BB1 )

where Z is arbitrary.

A-4

0..-



Vita

Lt Col Abel-Monem E. Doma was born in Egypt in 1946.

After graduating from high school, he attended military

technical college, Cairo, Egypt, from which he received

a B.S. degree in electronic engineering in 1971. Sub-

sequent assignments included Egyptian Army Signal

Corps officer as electronic engineer. In 1976, he was

assigned to be an instructor in the Military Technical

Institute, Cairo, Egypt. He received his Diploma Degree

in Computer System and Automatic Control from Military

Technical College in 1981. He entered the Air Force

Institute of Technology in June 1982.

I 4'l



Unclassified
SECURITY CLASSIFICATION OF THIS PAGE r -A QSf42 7

REPORT DOCUMENTATION PAGE
I& REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

Unclassi fled_______________________
SECURITY CLASSIFICATION AUTHORITY 3. OISTRISUTIONIAVAILASILITY OF REPORT

Approved for public release and
2b OIECLASSIFICATIONOOWNGRAOING SCHEDULE distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUM91ER(S13 S. MONI1TORING ORGANIZATION REPORT NUMSER(S)

AFIT/GCs/mA/83D-1

" NAME OF PERFORMING ORGANIZATION b6 OFF ICE SYMBOL 7&. NAME OF MONITORING ORGANIZATION

School of Engineering AfiT/ENG6

ft. ADDRESS (City. Stut Nod ZIP Code) 7b. ADDRESS I1ily. SUa.nd ZIP Cocu)

Air Force Institute of Technology
Wright-Patterson, AFB, Ohio 45433

Sft NAME OF FUNOING/SPONSORING Wb OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION 4I OtppUeabo)

Aerospace Medical Research IAM RL_____________________
ft. ADDRESS (City. Stale .. d ZIP Code) _10. SOURCE OF FUNDING NO&. ____________

PROGRAM PROjECT TASK WORK UNIT
ELE ME NT NO. NO. No. NO.

AMRL, AFB, OHIO 45433

11. TITLE Ontiade SeuntY Cluiestion)
See Box 19 (unclassified) ________________ ____

12. PERSONAL AUTHORIS) Doma, Abdel Monem E.

TYPE OF REPORT 13b. TIME COVERED '14. DATE OF REPORT (Yr.. M4L. DOWt jI. PAGE COUNT

MC Tkmcle - FROM - TO I___ C18 Dg~fecmbar 16
10. SUPPLEMENTARY NOTATION CO." reease 1AW AMh 19-I.

17. COSATI CODES1 IS& SUBJECT TERMS (C~adaa oe merge it Xj " -

FILD GOU SUN.GR. Linear Algebra, Generalized inverses, Polynomial matrices,
Lyapounov equation, Riccati equation, Least-squares

IS. ABSTRACT WOICShMm.o em ew It memuwy sad IhUaiy by blIs numnborl
Title: "Generalized Inverses of Matrices and Its Applications" - Theory and computation te
niques of the various types of generalized inverses of matrices which have Polynomial ele-
ments x, y, z.... etc., are presented. A simple algoritm for computation of generalized

Inverses of a constant matrix is established, and then applied to the case of matrices
having polynomial elements in several variables. Reduction of a matrix to its Smith form
over the ring of polynomial elements in several variables is presented. A simply algorithmn
for investigation of the system Ax - b in case of constant and nonconstant rank of A is
presented. Application of generalized Inverses to solve more general matrix equations
such as Lyapunov and RItccati equations is studied.

ft 00SVIWIAVAIASILITV OP ABSTRACT 21. ABSTRACT SECURITY CLAIIPICATION

I SIIDWsnUTso (3 SAmS As RPT. (3 oric uBIS (3

2f AM 0P ISSPOOSSBLS I 1VISUAL amb TGUSPIONE NUMBERf 23.. OFF ICE SYMBOL

L w iqum AM A, -1 A&CI -&jm

Do0 POWM W%7 a 0" 90TION OP I JAN 73 IS OBSOLETE unclassife
WICURITY CLASSIFICATION OP ?NO PAGS




